42 research outputs found

    Characterization of traverse slippage experienced by Spirit rover on Husband Hill at Gusev crater

    Get PDF
    Spirit rover experienced significant slips traversing Husband Hill. This paper analyzes the slippage Spirit experienced from Sol 154 to Sol 737. Slippage with respect to terrain type and slope is computed using data downlinked from the rover, rover position, and orientation estimations from visual odometry (VO) and photogrammetry based bundle adjustment (BA) method. Accumulated slippage reached a maximum of 83.86 m on Sol 648. However, as Spirit descended into the Inner Basin, the direction of slippage reversed, and accumulated slippage approached zero by the end of the entire traverse. Eight local regions with significant slips and nineteen traverse segments have been analyzed. Slippage was found to be highly correlated to slope direction and magnitude; the reverse of slope directions in the ascending and descending portions of the traverse proves to be the main contributor to the observed cancellation of slippage. While the horizontal component of the slippage almost canceled out, the difference in elevation continually accumulated, mainly during the ascent. In general, long traverse segments created more slips than short ones. This is reflected in both the accumulated and individual slippages. In considering the four major Mars terrain types, Spirit performed best on bedrock, managing to drive on slopes close to 30°. Fine-grain surfaces were the most challenging; though progress was made on slopes up to 15°, slippages of over 100% (more slippage than distance traveled) occurred for short segments. The results of this work can be incorporate into a traverse planning framework in which rover slippage is minimized. Results can be employed in landed planetary missions for precision navigation to avoid potentially dangerous regions by considering expected slippage

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    Distances and ages of NGC 6397, NGC 6752 and 47 Tuc

    Full text link
    Distances and absolute ages for the globular clusters NGC6397, NGC6752, and 47 Tuc are obtained using Main Sequence Fitting. Accurate reddenings and metal abundances (errors of 0.005 mag and 0.04 dex) are obtained by comparing B-V, b-y colours and UVES spectra for clusters TO-stars and subgiants with similar data for Hipparcos subdwarfs, using a reddening free temperature indicator (Halpha). Errors in distances and ages are 0.07 mag and 1 Gyr. NGC6397 and NGC6752 have ages of 13.5\pm 1.1 and 13.4\pm 1.1 Gyr, while 47 Tuc is probably about 2.6 Gyr younger, in agreement with results obtained by techniques sensitive to relative ages. Considering possible systematic errors, the age of the oldest globular clusters is 13.4\pm 0.8\pm 0.6 Gyr (random and systematic errors). This age is fully compatible with WMAP results, and indicates that the oldest Galactic globular clusters formed within the first 1.7 Gyr after the Big Bang, corresponding to a redshift of z\geq 2.5, in a standard LambdaCDM model. The epoch of formation of the (inner halo) globular clusters lasted about 2.6 Gyr, ending at a time corresponding to a redshift of z\geq 1.3. Once combined with values of Ho given by WMAP and by the HST Key Project, our age estimate provides a robust upper limit at 95% level of confidence of Omega_M<0.57, indicating the need for a vacuum energy independent of results from type Ia SNe and clusters of galaxies. Using cluster distances, we derive a value of M_V(HB)=(0.22\pm 0.05)([Fe/H]+1.5)+(0.56\pm 0.07) for the zero point of the relation between the horizontal branch absolute magnitude and metallicity. When combined with the apparent average luminosity of the RR Lyrae stars in the LMC by Clementini et al. (2003), this zero point provides a new estimate of the distance modulus to the LMC: (m-M)o=18.50\pm 0.09.Comment: 16 pages, 5 encapsulated figures, accepted for publication in A&

    Multi-wavelength diagnostic properties of Galactic Planetary Nebulae detected by GLIMPSE-I

    Full text link
    We uniformly analyze 136 optically detected PNe and candidates from the GLIMPSE-I survey in order to to develop robust, multi-wavelength, classification criteria to augment existing diagnostics and provide pure PN samples. PNe represent powerful astrophysical probes. They are important dynamical tracers, key sources of ISM chemical enrichment, windows into late stellar evolution, and potent cosmological yardsticks. But their utility depends on separating them unequivocally from the many nebular mimics which can strongly resemble bona fide PNe in traditional optical images and spectra. We merge new PNe from the carefully evaluated, homogeneous MASH-I and MASH-II surveys, which offer a wider evolutionary range of PNe than hitherto available, with previously known PNe classified by SIMBAD. Mid-infrared (MIR) measurements vitally complement optical data because they reveal other physical processes and morphologies via fine-structure lines, molecular bands and dust. MIR colour-colour planes, optical emission line ratios and radio fluxes show the unambiguous classification of PNe to be complex, requiring all available evidence. Statistical trends provide predictive value and we offer quantitative MIR criteria to determine whether an emission nebula is most likely to be a PN or one of the frequent contaminants such as compact HII regions or symbiotic systems. Prerequisites have been optical images and spectra but MIR morphology, colours, environment and a candidate's MIR/radio flux ratio provide a more rigorous classification. Our ultimate goal is to recognize PNe using only MIR and radio characteristics, enabling us to trawl for PNe effectively even in heavily obscured regions of the Galaxy.Comment: 32 pages, 18 figures, 10 table

    Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs

    Get PDF
    We discuss the impact of Population II and Globular Cluster (GCs) stars on the derivation of the age of the Universe, and on the study of the formation and early evolution of galaxies, our own in particular. The long-standing problem of the actual distance scale to Population II stars and GCs is addressed, and a variety of different methods commonly used to derive distances to Population II stars are briefly reviewed. Emphasis is given to the discussion of distances and ages for GCs derived using Hipparcos parallaxes of local subdwarfs. Results obtained by different authors are slightly different, depending on different assumptions about metallicity scale, reddenings, and corrections for undetected binaries. These and other uncertainties present in the method are discussed. Finally, we outline progress expected in the near future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22 pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty LaTeX style file, enclose

    Observational Constraints on the Common Envelope Phase

    Full text link
    The common envelope phase was first proposed more than forty years ago to explain the origins of evolved, close binaries like cataclysmic variables. It is now believed that the phase plays a critical role in the formation of a wide variety of other phenomena ranging from type Ia supernovae through to binary black holes, while common envelope mergers are likely responsible for a range of enigmatic transients and supernova imposters. Yet, despite its clear importance, the common envelope phase is still rather poorly understood. Here, we outline some of the basic principles involved, the remaining questions as well as some of the recent observational hints from common envelope phenomena - namely planetary nebulae and luminous red novae - which may lead to answering these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore